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Logarithmically slow expansion of hot bubbles in gases
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We predict a logarithmically slow expansion of hot bubbles in gases in the process of cooling. A model
problem is first solved, when the temperature has compact support. Then the temperature profile decaying
exponentially at large distances is considered. The periphery of the bubble is shown to remain essentially static
(“glassy”) in the process of cooling until it is taken over byagarithmically slowly expanding “core.” An
analytical solution to the problem is obtained by matched asymptotic expansion. This problem gives an
example of how logarithmic corrections enter dynamic scaling.

PACS numbds): 47.54+r, 47.40.Dc, 02.30.Jr

The dynamic scaling behavior of extended nonlinear sys- The scaled gas pressure stays constamtd equal to
tems out of equilibrium has attracted much attention in dif-unity) in this approximation, so the scaled gas density is
ferent areas of physicl]. In continuum models dynamic simply p(x,t)=T"%(x,t), while the gas velocity is/(x,t)
scaling is intimately related to the self-similar asymptotics of=T"9,T [6]. Therefore, once solving Ed1) for the tem-
nonlinear partial differential equatioi8]. Sometimes loga- perature, one can easily find all other variables.

rithmic corrections enter dynamic scaling lajdg. No gen- Equation(1) has a multitude of similarity solutions:
eral scenario for their appearance is known. One can say
from experience that they appear in marginal cases, dividing TB(X,t):t(ZB*l)/(rwl) o(x/tP), 2

regimes with qualitatively different behavior. The aim of this

work is to investigate one particular setting, of general inter\yhere g is an arbitrary parameter. Therefore, an interesting
est, where logarithmic corrections to scaling appear unexselection problem appears, like in many other situations in
pectedly: cooling dynamics of hot bubbles in gases. the nonlinear dynamics of extended systd@d0].

Heat transfer in gases, strongly heated locally, looks quite Equation(1) has appeared in the context of the cooling of
different from the simple picture provided by the linear heatthe “fireball” produced by a strong local exp|osion in a gas
equation. The difference is mainly due to the small-Mach{g—g]. An explosion involves energy release on a time scale
number conductive cooling floWCCF) that developgeven  short compared to the characteristic acoustic time. In this
at zero gravity owing to small pressure gradients. The CCFcase the preceding rapid stage of the dynamics produces an
brings in cold gas from the periphery and can stronglyinverse power-law dependence of the gas temperature on the
modify the cooling dynamics. The importance of CCFs wasdistance from the explosion sifé]. It has been showfs,7]
recognized long ago in astrophys|& and in the context of  that the exponent of this power law uniquely selects the scal-
the late stage of strong explosiof4,5]. More recently a jng exponenis. As a result, the fireball expansion exhibits a
quantitative investigation of CCFs bege+8]. In this paper  power law in time.
we pl’ediCt a new, Striking feature Of CCFs. If the |n|t|a| A different type of local heating occurs when the energy
temperature profile rapidly decays at large distanité®  release time is long compared to the acoustic time, but still
exp(—kx)), k>0], the hot bubble, while cooling down sig- short compared to the cooling time. In this case the initial
nificantly, should expantbgarithmically slowly. temperature profile is more localized, as it reflects the spatial

Starting from the continuity, momentum, and energystructure of the heating ageffor example, the radial inten-
equations for an inviscous ideal gas at zero gravity, and enkity of the laser beam This new regime will be the focus of
ploying the small-Mach-number expansion, one arrives ahis paper. We will see that thereris similarity asymptotics
the following nonlinear equation for the scaled gas temperagg this problem. Instead, the solution approaches a “quasi-
ture[6]: similarity” asymptotics with logarithmic corrections to scal-

—T25. (T 1 ing.
HT=T 0T 70,T), @ Consider first a model problem when the initial tempera-
where the subscriptsand x stand for partial derivativeG  ture profile has compact suppoff(x,0)=Ty(x)>0 at x
slab geometry is considergdand v is the exponent in the e[—L,L], and zero elsewhere. We will limit ourselves to a
assumed power-law temperature dependence of the heat cdemperature-independent heat conductivity=0. Despite
ductivity of the gaq9]. this choice, the nonlinearity of E¢L) persists. Assume sym-
metry with respect toc=0 and impose the Neumann bound-
ary conditionsd, T(0,t)=d,T(L,t)=0 [11]. A local analysis
*On leave from the Institute of Theoretical and Experimentalof Eq. (1) near the edge of support of its solutidr{x,t)
Physics, Moscow 117259, Russia. shows that the support remains compact andhangedor
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t>0. What is the late-time behavior of the temperature? That x— +~. What about the bubble “core”? We will show
constancy of support immediately sele@s 0, so the simi- that it can be described, at>1, by a "“quasisimilarity”
larity ansatz becomeBy(x,t) =t~ 16(x). Then Eq(1) yields  solution plus small corrections:

6(x) =(a%/2)cog(x/a) for xe[—L,L],8(x)=0 elsewhere,

anda=xL/2. This simple similarity solution describes the U(X,7) =Ug(X,7) +Ug(X,7)+ - - -, (6)
cooling of the hot bubbléand filling it with the dense gas

without any change in the bubble size. where

Remarkably,Ty(x,t) represents a long-time asymptotics a2(7) X
for any initial condition that has compact suppdrtL,L] Uo(X, 7)= cod (7)
and obeys the Neumann boundary conditions. We will show 2 a(7)

here only that this solution is linearly stable with respect to d o f Is i find .
small perturbations, and find the spectrum of the linearized"d - - <U1=<Uo. One of our goals Is to find an asymptotic

roblem. Introduce new variablas=tT(x,t) and r=Int. expansion for(r).
quuation(l) assumes the form (x.1) T The leading term ofa(7) can be guessed immediately.

Indeed, expansion afy(x,7) in powers ofx— zra(7)/2 near

9,U=U—(dyU)%+ Udy,U, (3 the point x=ma(7)/2 begins with the term (1/2X

—ma(7)/2]% This is a wave traveling with speeda/2

while the similarity solutionTo(x,t) becomes a steady-state gjong thex axis. Therefore, it is natural to look forgeneral

solution #(x). Introducing a small correction(x, 7) Ato this traveling-wave solutiorv(x,)=V(x— 7) of Eq. (3) with a

solution and linearizing Eq(3), we obtain g .v=L(&)v, unit speed and require that it behave like+constf/2 atz

where ——oo and like cexp(—2) at z— +», wherez=x—r. If
R such a solution exists, we can match it with the leading term

L(&)=(1/2)cOS £ dg+sin2£ g+ 2 SirP & (4)  of the quasisimilarity solution(7) in the region *—(x

) . . —mal2)<a,l<—z, once
and ¢é=x/a. We look for eigenfunctions in the form of

V(& 7)=€""¢.(§). The general solution of the resulting or- a(r)=27/m=(2/m7)Int. )
dinary differential equation is
Equations(7) and(8) have important implications. First, the
¥, (§)=Cycos & ,Fy(a,a;,1/2~tarf §) temperature scaling at the bubble center acquires a logarith-
. mic correction. Second, the bubble core expands logarithmi-
+CacosEsing oFy(b- b 32~ tarf &), (5) cally slowly. We will show in the following that these are
indeed correct results, calculate the subleading and sub-
subleading terms foa(7), and find other attributes of the
asymptotic solution.
The general traveling-wave solution of E¢B), V(2),
obeys the second-order equation

where ,F, is the hypergeometric functiorG, and C, are
arbitrary constantsa. =[1+(8y+9)*?)/4, and b.=[3
+(8y+9)Y?)/4. Requiring that the perturbation remain
small compared to the unperturbed solutjand hence van-
ish like (mr/2— &)? or faster at— m/2], we find the(continu-
ous spectrum of the linearized problem:cc<y<—1. This N =\ \/2

result proves the linear stability of the similarity solution Ve= VoVt Vo, ©

To(x,t). Notice the presence of a gap between the uppefhich s soluble analytically. One integration yields
edge of the spectrunp=—1 and the stability bordey=0.

Going back to physical variables, we find that sntaln- V- YdV/dz)=—1-W[—exp(—1-V 1], (10)
peratureperturbations around the similarity solution exhibit
a power-law decay” 1. whereW( %) is the product log function defined as the solu-

It should be noticed thg®= 0 is a marginal case dividing tion of equationWe”= 7 (see, e.g., Ref.15], p. 75). The
two qualitatively different types of dynamics as described byarbitrary constant in Eq10) has been chosen to satisfy the
solutions(2). Indeed, solutions with3>0 describe power- required asymptotic behaviov(z) — (z+ constf/2 at z—
law expansion$6—8], while solutions with3<0 correspond —c. Notice that, as3/>0 andV,<0, we should work with
to power-lawshrinkings[12]. One can expect logarithmic the negative branch of the product log functiop<0 and
corrections to appear in the special cgse0 if the initial ~ W(#)<O0.
condition doesiot have compact support, but decays rapidly  Integrating Eq.(10), we obtain the traveling-wave solu-
enough. Therefore, we assume that the initial temperaturgon in an implicit form:
profile of the bubble is symmetric with respectxe0 and
decays exponentialljd3]. We will continue using the new J(V)+z+C=0, (13)
variables and require(x,0)— c exp(—k|x|) at|x|— o, where
k andc are positive constants. One can alwayskpsatl [14].
We will be interested in a long-time asymptotics of the so-
lution: 7=1. Our first important observation is thafx, ) IV)= fU(V) d¢ 12
=cexp(r—X) is anexactsolution of Eq.(3). This traveling- 1 1-¢(—e ¢
wave solution with a unit speed corresponds to a steady-state
solutionT(x) = c exp(—x) in physical variables, and it repre- U(V)=—In{-W—exp(-1-V YT and C is an arbitrary
sents the correct asymptotics of the solution to our problentonstant.

where
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To understand the asymptotic behavior of this solution at

z——o andz— +o, we need to know the asymptotics of
J(V). After some algebra we obtain

INV+A,+0(V),
IVIZY oy %InV+A2+O(V‘1’2), a3
atV— +0 andV— +x, respectively. Here
A= flw%=—l.4607440 ceey
A,=—2—(1/3)In(22)— A3, and
A3=fl(;_+ —+£ d{=-0.0536182....
o\1-¢—e ¢t 2 3¢
Using Egs.(11) and(13), we obtain
V(z)=e 2 ¢ 21+0(e %) at z—+xo (14

and
V(z)=(1/2)(z+ C+A2)2+(2/3)(2+C+A2)In[(|z+C

+A,)/2]+0(IN3z+C+A,) at z——o.

(19

The required asymptotic behavivi—c exp(—2) atz— +»
selectsC=—A;—Inc, so the traveling-wave solutiqil) is

now fully determined. After some rearrangement, we rewrite

the asymptotic§14) and (15) as

V(z)=ce ?+0(e %) at z—+, (16)
and
V(2)=(1/2)(z— A)2+(2/3)(z— A)In|z— A|
+0(In?z]) at z——oe, (17

whereA=A;—A,+(1/3)In2+Inc.
The leading term in Eq16) corresponds to a steady-state

solution in the physical variables, while the subleading terrT}1

is exponentiallysmall with respect to the leading one. This
essentially stati¢‘glassy”) behavior of the solution at large
distances reflecteffectivediffusion choking at small tem-
peratures.

Now let us return to the bubble core description, EA).
Our basic assumption hefsupported by the resultss that,
in the asymptotic stage>1, the termsug,u,, ... depend

on time only through the time dependencesipbf a anda,

of a,a, ..., respectively. The small parameter of this expan-

sion isa/a. In the zeroth approximation of this perturbation
schemeu, obeys Eq(3) without the time derivative term. In

the first approximation we obtain the following linear equa-

tion:
Luy(¢é)=aacod &1+ tané), (18

where we have again uséd- x/a.
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FIG. 1. The amplitudea versus the new timer=Int found
numerically (dashed lingand analytically(solid line). The param-
eters are described in the text.

The zero modes of the operatdr are Y (¢&)=cosé
+&cosésing and @ (&) =sinécosé. Looking for a general
solution of Eg. (18) in the form of u;=C.(&€)Y (&)
+Cy(&)P(£) and defininga(7) by the conditionu(0,7)
=a?(7)/2, we arrive at

u (€)= —(2/3)aacos & (£tang—1) Incosé
+2 In(2/e) & tané+tané Im[ Li,(—e?') ]},
(19

where Li(x)=2y_,k ™ 2xX is the dilogarithm(see, e.g., Ref.
[15], p. 743. In the vicinity of £&=#/2,

7 .. A&
1=—aa§|nﬂ

3 & +aao([&* &),

(20

whereé= ¢— m/2. Too close t&= /2 the correctionu; and

its derivatives become larger than the zero-order soluijpn
and its corresponding derivatives, so the perturbation proce-
dure breaks down. Therefore, the bubble core solJtits.
(6), (7), and(19)] should be matched with the traveling-wave
solution [Eq. (11)] in the region wheréx— 7a/2| is small
enough(so that the leading term of the asymptoticsugfis
much larger than the subleading tejnimut, on the other
and, large enougkso thatu, is small compared tay).
Working in this region and collecting the leading contribu-
tions fromuy andu,, we obtain, after some rearrangement,

L2 T ~ 1 ~4 a ~ 3
u= -x*+ zaxIn|x| +—=0O(x" + —O(|x|°In|x|)
2 3 a? a?

+0(a?In?a)o(In|x|)+ - - -, (22)
wherex=x—(7/2)a— (w/3)aln(e?a/4).

Now we can perform the matching procedure. We require
that thez— — o0 asymptotics of the traveling wave solution,
Eqg. (17), coincide with the asymptotic€1) of the bubble
core solution. This yields

2 2 T
S 2
a(n) |7 3In47_r+B+Inck +o(1)|, (22
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where B=1+A;+A3;=-0.51436298...,0(1) denotes excellent. We also verified other attributes of the asymptotic
terms that vanish as—«~ and we have restored ttkedepen-  solution.
dence[14]. We see that the leading termafr) is logarith- In separate simulationgl6], the evolution of the same
mic in physical timet, and it coincides with Eq(8). The initial condition was investigated in the framework of the
subleading term behaves like 4+ Inint, while the sub-  complete set of gas dynamic equations. In the small-Mach-
subleading term is constant. number regime the results essentially coindiebecept for an
The matching region is determined by the requirementgcoustic transietwith those obtained with Eq(1).
that the subleading term in E1) be much less than the |4 conclusion, we predict a logarithmically slow expan-
leading term, but much greater than the rest of terzr/r;s. Thesgon of hot bubbles in gases. By constructing an asymptotic
yield an approximate condition fa<—x+(m2)a<a®, s0  sojytion that matches a “quasisimilarity” inner solution and
that the matching region expands as . a “glassy” outer solution, we have been able to see how

We checked the asymptotic solution numerically by di-joqarithmic corrections enter dynamic scaling. We hope that
rectly solving Eq(3) in the new variables. This enabled us to this study will motivate experimental work on hot bubble

reach7~ 20, that ist~5x 10%. Equation(3) was solved on dynamics.
the intervalx € (0,9) subject to the Neumann boundary con-
ditions. The initial condition wasi(x,7=0)=2 exg —3(x? We are grateful to Y. Kurzweil for help with Fig. 1. This
+0.1)"?], so thatc=2 andk=3. The system length was work was partially supported by a grant from Israel Science
large enough for the solution to enter the asymptotic regimé&oundation, administered by the Israel Academy of Sciences
before the expanding “core” reaches the boundary9. and Humanities, by the COE Visiting Research Scholar Pro-
Figure 1 comparea=[2u(0,7)]*? found numerically with gram at YITP and by the Russian Foundation for Basic Re-
the prediction of Eq(22). At long times the agreement is search(Grant No. 99-01-00123
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