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Logarithmically slow expansion of hot bubbles in gases
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We predict a logarithmically slow expansion of hot bubbles in gases in the process of cooling. A model
problem is first solved, when the temperature has compact support. Then the temperature profile decaying
exponentially at large distances is considered. The periphery of the bubble is shown to remain essentially static
~‘‘glassy’’ ! in the process of cooling until it is taken over by alogarithmically slowly expanding ‘‘core.’’ An
analytical solution to the problem is obtained by matched asymptotic expansion. This problem gives an
example of how logarithmic corrections enter dynamic scaling.

PACS number~s!: 47.54.1r, 47.40.Dc, 02.30.Jr
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The dynamic scaling behavior of extended nonlinear s
tems out of equilibrium has attracted much attention in d
ferent areas of physics@1#. In continuum models dynamic
scaling is intimately related to the self-similar asymptotics
nonlinear partial differential equations@2#. Sometimes loga-
rithmic corrections enter dynamic scaling laws@1#. No gen-
eral scenario for their appearance is known. One can
from experience that they appear in marginal cases, divid
regimes with qualitatively different behavior. The aim of th
work is to investigate one particular setting, of general int
est, where logarithmic corrections to scaling appear un
pectedly: cooling dynamics of hot bubbles in gases.

Heat transfer in gases, strongly heated locally, looks q
different from the simple picture provided by the linear he
equation. The difference is mainly due to the small-Mac
number conductive cooling flow~CCF! that develops~even
at zero gravity! owing to small pressure gradients. The CC
brings in cold gas from the periphery and can stron
modify the cooling dynamics. The importance of CCFs w
recognized long ago in astrophysics@3# and in the context of
the late stage of strong explosions@4,5#. More recently a
quantitative investigation of CCFs began@6–8#. In this paper
we predict a new, striking feature of CCFs. If the initi
temperature profile rapidly decays at large distances@like
exp(2kuxu), k.0#, the hot bubble, while cooling down sig
nificantly, should expandlogarithmically slowly.

Starting from the continuity, momentum, and ener
equations for an inviscous ideal gas at zero gravity, and
ploying the small-Mach-number expansion, one arrives
the following nonlinear equation for the scaled gas tempe
ture @6#:

] tT5T2]x~Tn21]xT!, ~1!

where the subscriptst and x stand for partial derivatives~a
slab geometry is considered!, and n is the exponent in the
assumed power-law temperature dependence of the heat
ductivity of the gas@9#.

*On leave from the Institute of Theoretical and Experimen
Physics, Moscow 117259, Russia.
PRE 611063-651X/2000/61~2!/1403~4!/$15.00
-
-

f

ay
g

-
x-

te
t
-

y
s

-
t
-

on-

The scaled gas pressure stays constant~and equal to
unity! in this approximation, so the scaled gas density
simply r(x,t)5T21(x,t), while the gas velocity isv(x,t)
5Tn]xT @6#. Therefore, once solving Eq.~1! for the tem-
perature, one can easily find all other variables.

Equation~1! has a multitude of similarity solutions:

Tb~x,t !5t ~2b21!/~n11!u~x/tb!, ~2!

whereb is an arbitrary parameter. Therefore, an interest
selection problem appears, like in many other situations
the nonlinear dynamics of extended systems@2,10#.

Equation~1! has appeared in the context of the cooling
the ‘‘fireball’’ produced by a strong local explosion in a ga
@6–8#. An explosion involves energy release on a time sc
short compared to the characteristic acoustic time. In
case the preceding rapid stage of the dynamics produce
inverse power-law dependence of the gas temperature on
distance from the explosion site@4#. It has been shown@6,7#
that the exponent of this power law uniquely selects the s
ing exponentb. As a result, the fireball expansion exhibits
power law in time.

A different type of local heating occurs when the ener
release time is long compared to the acoustic time, but
short compared to the cooling time. In this case the ini
temperature profile is more localized, as it reflects the spa
structure of the heating agent~for example, the radial inten
sity of the laser beam!. This new regime will be the focus o
this paper. We will see that there isno similarity asymptotics
to this problem. Instead, the solution approaches a ‘‘qu
similarity’’ asymptotics with logarithmic corrections to sca
ing.

Consider first a model problem when the initial tempe
ture profile has compact support:T(x,0)5T0(x).0 at x
P@2L,L#, and zero elsewhere. We will limit ourselves to
temperature-independent heat conductivityn50. Despite
this choice, the nonlinearity of Eq.~1! persists. Assume sym
metry with respect tox50 and impose the Neumann boun
ary conditions]xT(0,t)5]xT(L,t)50 @11#. A local analysis
of Eq. ~1! near the edge of support of its solutionT(x,t)
shows that the support remains compact andunchangedfor
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t.0. What is the late-time behavior of the temperature? T
constancy of support immediately selectsb50, so the simi-
larity ansatz becomesT0(x,t)5t21u(x). Then Eq.~1! yields
u(x)5(a2/2)cos2(x/a) for xP@2L,L#,u(x)50 elsewhere,
and a5pL/2. This simple similarity solution describes th
cooling of the hot bubble~and filling it with the dense gas!
without any change in the bubble size.

Remarkably,T0(x,t) represents a long-time asymptoti
for any initial condition that has compact support@2L,L#
and obeys the Neumann boundary conditions. We will sh
here only that this solution is linearly stable with respect
small perturbations, and find the spectrum of the lineari
problem. Introduce new variablesu5tT(x,t) and t5 ln t.
Equation~1! assumes the form

]tu5u2~]xu!21u]xxu, ~3!

while the similarity solutionT0(x,t) becomes a steady-sta
solutionu(x). Introducing a small correctionv(x,t) to this
solution and linearizing Eq.~3!, we obtain ]tv5L̂(j)v,
where

L̂~j!5~1/2!cos2 j ]jj1sin 2j ]j12 sin2 j ~4!

and j5x/a. We look for eigenfunctions in the form o
v(j,t)5egtcg(j). The general solution of the resulting o
dinary differential equation is

cg~j!5C1 cos2 j 2F1~a2 ,a1 ,1/2,2tan2 j!

1C2 cosj sinj 2F1~b2 ,b1 ,3/2,2tan2 j!, ~5!

where 2F1 is the hypergeometric function,C1 and C2 are
arbitrary constants,a65@16(8g19)1/2#/4, and b65@3
6(8g19)1/2#/4. Requiring that the perturbation rema
small compared to the unperturbed solution@and hence van-
ish like (p/22j)2 or faster atj→p/2#, we find the~continu-
ous! spectrum of the linearized problem:2`,g<21. This
result proves the linear stability of the similarity solutio
T0(x,t). Notice the presence of a gap between the up
edge of the spectrumg521 and the stability borderg50.
Going back to physical variables, we find that smalltem-
peratureperturbations around the similarity solution exhib
a power-law decaytg21.

It should be noticed thatb50 is a marginal case dividing
two qualitatively different types of dynamics as described
solutions~2!. Indeed, solutions withb.0 describe power-
law expansions@6–8#, while solutions withb,0 correspond
to power-lawshrinkings @12#. One can expect logarithmi
corrections to appear in the special caseb50 if the initial
condition doesnot have compact support, but decays rapid
enough. Therefore, we assume that the initial tempera
profile of the bubble is symmetric with respect tox50 and
decays exponentially@13#. We will continue using the new
variables and requireu(x,0)→c exp(2kuxu) at uxu→`, where
k andc are positive constants. One can always putk51 @14#.
We will be interested in a long-time asymptotics of the s
lution: t@1. Our first important observation is thatu(x,t)
5c exp(t2x) is anexactsolution of Eq.~3!. This traveling-
wave solution with a unit speed corresponds to a steady-s
solutionT(x)5c exp(2x) in physical variables, and it repre
sents the correct asymptotics of the solution to our prob
e
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at x→1`. What about the bubble ‘‘core’’? We will show
that it can be described, att@1, by a ‘‘quasisimilarity’’
solution plus small corrections:

u~x,t!5u0~x,t!1u1~x,t!1•••, ~6!

where

u0~x,t!5
a2~t!

2
cos2

x

a~t!
~7!

and•••!u1!u0. One of our goals is to find an asymptot
expansion fora(t).

The leading term ofa(t) can be guessed immediatel
Indeed, expansion ofu0(x,t) in powers ofx2pa(t)/2 near
the point x5pa(t)/2 begins with the term (1/2)@x

2pa(t)/2#2. This is a wave traveling with speedpȧ/2
along thex axis. Therefore, it is natural to look for ageneral
traveling-wave solutionv(x,t)5V(x2t) of Eq. ~3! with a
unit speed and require that it behave like (z1const)2/2 at z
→2` and like c exp(2z) at z→1`, where z5x2t. If
such a solution exists, we can match it with the leading te
of the quasisimilarity solution~7! in the region 1!2(x
2pa/2)!a,1!2z, once

a~t!52t/p5~2/p!ln t. ~8!

Equations~7! and~8! have important implications. First, th
temperature scaling at the bubble center acquires a loga
mic correction. Second, the bubble core expands logarith
cally slowly. We will show in the following that these ar
indeed correct results, calculate the subleading and s
subleading terms fora(t), and find other attributes of the
asymptotic solution.

The general traveling-wave solution of Eq.~3!, V(z),
obeys the second-order equation

2Vz5V2Vz
21VVzz, ~9!

which is soluble analytically. One integration yields

V21~dV/dz!5212W@2exp~212V21!#, ~10!

whereW(h) is the product log function defined as the sol
tion of equationWeW5h ~see, e.g., Ref.@15#, p. 751!. The
arbitrary constant in Eq.~10! has been chosen to satisfy th
required asymptotic behaviorV(z)→(z1const)2/2 at z→
2`. Notice that, asV.0 andVz,0, we should work with
the negative branch of the product log function:h,0 and
W(h),0.

Integrating Eq.~10!, we obtain the traveling-wave solu
tion in an implicit form:

J~V!1z1C50, ~11!

where

J~V!5E
1

U(V) dz

12z2e2z
, ~12!

U(V)52 ln$2W@2exp(212V21)#% and C is an arbitrary
constant.
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To understand the asymptotic behavior of this solution
z→2` and z→1`, we need to know the asymptotics o
J(V). After some algebra we obtain

J~V!5H ln V1D11O~V!,

~2V!1/21
1

3
ln V1D21O~V21/2!,

~13!

at V→10 andV→1`, respectively. Here

D15E
1

` ~12e2z!dz

z~12z2e2z!
521.460 744 00 . . . ,

D25222(1/3)ln(2e)2D3, and

D35E
0

1S 1

12z2e2z
1

2

z2
1

2

3z D dz520.053 618 92 . . . .

Using Eqs.~11! and ~13!, we obtain

V~z!5e2z2C2D11O~e22z! at z→1` ~14!

and

V~z!5~1/2!~z1C1D2!21~2/3!~z1C1D2!ln@~ uz1C

1D2u!/A2#1O~ ln2uz1C1D2u! at z→2`.

~15!

The required asymptotic behaviorV→c exp(2z) at z→1`
selectsC52D12 ln c, so the traveling-wave solution~11! is
now fully determined. After some rearrangement, we rew
the asymptotics~14! and ~15! as

V~z!5ce2z1O~e22z! at z→1`, ~16!

and

V~z!5~1/2!~z2D!21~2/3!~z2D!lnuz2Du

1O~ ln2uzu! at z→2`, ~17!

whereD5D12D21(1/3)ln 21ln c.
The leading term in Eq.~16! corresponds to a steady-sta

solution in the physical variables, while the subleading te
is exponentiallysmall with respect to the leading one. Th
essentially static~‘‘glassy’’ ! behavior of the solution at larg
distances reflectseffectivediffusion choking at small tem-
peratures.

Now let us return to the bubble core description, Eq.~7!.
Our basic assumption here~supported by the results! is that,
in the asymptotic staget@1, the termsu0 ,u1 , . . . depend
on time only through the time dependences ofa, of a andȧ,
of a,ȧ, . . . , respectively. The small parameter of this expa
sion is ȧ/a. In the zeroth approximation of this perturbatio
scheme,u0 obeys Eq.~3! without the time derivative term. In
the first approximation we obtain the following linear equ
tion:

L̂u1~j!5aȧ cos2 j~11j tanj!, ~18!

where we have again usedj5x/a.
t

e

-

-

The zero modes of the operatorL̂ are Y(j)5cos2j
1j cosj sinj and F(j)5sinj cosj. Looking for a general
solution of Eq. ~18! in the form of u15C1(j)Y(j)
1C2(j)F(j) and defininga(t) by the conditionu(0,t)
5a2(t)/2, we arrive at

u1~j!52~2/3!aȧ cos2 j$~j tanj21! ln cosj

12 ln~2/e!j tanj1tanj Im@Li2~2e2i j!#%,

~19!

where Li2(x)5(k51
` k22xk is the dilogarithm~see, e.g., Ref.

@15#, p. 743!. In the vicinity of j5p/2,

u15
p

3
aȧj̃ ln

4u j̃u

e2
1aȧO~ u j̃u3 lnu j̃u!, ~20!

wherej̃5j2p/2. Too close toj5p/2 the correctionu1 and
its derivatives become larger than the zero-order solutionu0
and its corresponding derivatives, so the perturbation pro
dure breaks down. Therefore, the bubble core solution@Eqs.
~6!, ~7!, and~19!# should be matched with the traveling-wav
solution @Eq. ~11!# in the region whereux2pa/2u is small
enough~so that the leading term of the asymptotics ofu0 is
much larger than the subleading terms! but, on the other
hand, large enough~so thatu1 is small compared tou0).
Working in this region and collecting the leading contrib
tions fromu0 andu1, we obtain, after some rearrangemen

u5
1

2
x̃21

p

3
ȧx̃ lnux̃u1

1

a2
O~ x̃4!1

ȧ

a2
O~ ux̃u3 lnux̃u!

1O~ ȧ2 ln2 a!O~ lnux̃u!1•••, ~21!

wherex̃5x2(p/2)a2(p/3)ȧ ln(e2a/4).
Now we can perform the matching procedure. We requ

that thez→2` asymptotics of the traveling wave solution
Eq. ~17!, coincide with the asymptotics~21! of the bubble
core solution. This yields

a~t!5
2

pk Ft2
2

3
ln

t

4p
1B1 ln ck21o~1!G , ~22!

FIG. 1. The amplitudea versus the new timet5 ln t found
numerically~dashed line! and analytically~solid line!. The param-
eters are described in the text.
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where B511D11D3520.514 362 926 . . . ,o(1) denotes
terms that vanish ast→` and we have restored thek depen-
dence@14#. We see that the leading term ina(t) is logarith-
mic in physical timet, and it coincides with Eq.~8!. The
subleading term behaves like lnt; ln ln t, while the sub-
subleading term is constant.

The matching region is determined by the requireme
that the subleading term in Eq.~21! be much less than th
leading term, but much greater than the rest of terms. Th
yield an approximate condition ln2 a!2x1(p/2)a!a2/3, so
that the matching region expands ast→`.

We checked the asymptotic solution numerically by
rectly solving Eq.~3! in the new variables. This enabled us
reacht;20, that ist;53108. Equation~3! was solved on
the intervalxP(0,9) subject to the Neumann boundary co
ditions. The initial condition wasu(x,t50)52 exp@23(x2

10.1)1/2#, so thatc52 and k53. The system length wa
large enough for the solution to enter the asymptotic reg
before the expanding ‘‘core’’ reaches the boundaryx59.
Figure 1 comparesa5@2u(0,t)#1/2 found numerically with
the prediction of Eq.~22!. At long times the agreement i
u
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excellent. We also verified other attributes of the asympto
solution.

In separate simulations@16#, the evolution of the same
initial condition was investigated in the framework of th
complete set of gas dynamic equations. In the small-Ma
number regime the results essentially coincide~except for an
acoustic transient! with those obtained with Eq.~1!.

In conclusion, we predict a logarithmically slow expa
sion of hot bubbles in gases. By constructing an asympt
solution that matches a ‘‘quasisimilarity’’ inner solution an
a ‘‘glassy’’ outer solution, we have been able to see h
logarithmic corrections enter dynamic scaling. We hope t
this study will motivate experimental work on hot bubb
dynamics.
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